Part III: Cloud Physics & Precipitation
Microphysics of cloud formation, droplet growth, and precipitation processes
1. Cloud Classification & Formation
1.1 Cloud Types
Clouds are classified based on their altitude and morphology according to the international system:
High Clouds (6-18 km)
Composed primarily of ice crystals due to cold temperatures (\(T < -40°C\))
- • Cirrus (Ci): Wispy, fibrous "mare's tail" clouds composed entirely of ice
- • Cirrostratus (Cs): Thin ice crystal sheets causing halos around sun/moon
- • Cirrocumulus (Cc): Small white patches, "mackerel sky"
Middle Clouds (2-6 km)
Mixed-phase clouds containing supercooled water droplets and ice crystals
- • Altostratus (As): Gray/blue-gray sheets, sun visible as through frosted glass
- • Altocumulus (Ac): Layered patches or rolls, precipitation rarely reaches ground
Low Clouds (0-2 km)
Primarily liquid water droplets, except in winter
- • Stratus (St): Uniform gray layer, drizzle possible
- • Stratocumulus (Sc): Low-level patches/rolls, breaks between clouds
- • Nimbostratus (Ns): Dark gray rain-bearing layer
Vertical Development Clouds
Convective clouds extending through multiple levels
- • Cumulus (Cu): Puffy, cauliflower-like fair-weather clouds
- • Cumulonimbus (Cb): Towering thunderstorm clouds with anvil tops, severe weather
1.2 Lifting Mechanisms
Clouds form when air is lifted to its saturation level. Four primary mechanisms cause lifting:
1. Orographic Lifting
Air forced over mountain barriers. Produces orographic clouds and precipitation on windward slopes, rain shadows on leeward sides. Example: Sierra Nevada range blocking Pacific moisture.
2. Frontal Lifting
Warm air forced over cold air at frontal boundaries. Produces widespread stratiform clouds along warm fronts, narrow bands along cold fronts.
3. Convective Lifting
Surface heating creates thermal updrafts. Produces cumulus and cumulonimbus clouds with strong vertical development. Dominant mechanism in tropics and summer afternoons.
4. Convergence
Air flows together horizontally, forcing upward motion. Occurs in low-pressure systems, sea-breeze fronts, and the Intertropical Convergence Zone (ITCZ).
1.3 Saturation and Supersaturation
Air becomes saturated when the relative humidity reaches 100%. The saturation vapor pressure \(e_s\) is given by the Clausius-Clapeyron equation (from Part I):
Supersaturation is defined as:
In clouds, supersaturations are typically small (\(S < 1\)% for water, \(S_{\text{ice}} < 10\)% for ice) because condensation/deposition onto existing droplets/crystals quickly reduces \(S\).
1.4 Adiabatic Cooling and Cloud Base Height
As an air parcel rises adiabatically, it cools at the dry adiabatic lapse rate \(\Gamma_d = 9.8\) K/km until it reaches saturation. The lifting condensation level (LCL)is where the cloud base forms.
📊 Practical Example:
If surface temperature is 25°C and dewpoint is 15°C (typical summer afternoon):
This is where cumulus cloud bases form. Lower dewpoint depression (\(T_0 - T_d\)) means lower cloud bases.
2. Cloud Condensation Nuclei (CCN)
2.1 Role of Aerosols
Homogeneous nucleation (pure water condensing without a surface) requires enormous supersaturations (\(S \sim 300\)%) that never occur in the atmosphere. Instead, water vapor condenses on cloud condensation nuclei (CCN) - tiny aerosol particles suspended in the air.
Why CCN are necessary:
- • Heterogeneous nucleation on CCN occurs at \(S \sim 0.1\text{-}1\)% (achievable in atmosphere)
- • CCN reduce surface energy barrier for droplet formation
- • Typical CCN concentrations: 100-1000 cm⁻³ (continental), 10-100 cm⁻³ (maritime)
2.2 Types of Aerosols
Hygroscopic Aerosols
Water-attracting particles that make excellent CCN:
- • Sea salt: NaCl from ocean spray (maritime air masses)
- • Sulfates: (NH₄)₂SO₄ from industrial emissions, volcanic SO₂
- • Nitrates: NH₄NO₃ from agricultural/combustion sources
- • Organics: Water-soluble organic compounds from biogenic sources
Hydrophobic Aerosols
Water-repelling particles, poor CCN:
- • Black carbon (soot): From combustion
- • Mineral dust: Desert and soil particles
- • Some organics: Hydrophobic organic compounds
Note: Coating with soluble material can make hydrophobic particles act as CCN
2.3 CCN Activation
A CCN "activates" (becomes a cloud droplet) when the ambient supersaturation exceeds the particle's critical supersaturation (\(S_c\)). The critical supersaturation depends on:
- • Particle size: Larger particles have lower \(S_c\) (activate more easily)
- • Chemical composition: More hygroscopic → lower \(S_c\)
- • Solubility: Highly soluble salts reduce \(S_c\)
2.4 Maritime vs Continental Air Masses
CCN concentrations profoundly affect cloud properties:
Maritime Clouds
- • Low CCN: 10-100 cm⁻³
- • Fewer, larger droplets (\(r \sim 15\) μm)
- • Efficient precipitation (collision-coalescence)
- • Shorter cloud lifetime
- • Higher albedo per unit LWP
Continental Clouds
- • High CCN: 100-1000 cm⁻³
- • Many smaller droplets (\(r \sim 5\) μm)
- • Suppressed precipitation
- • Longer cloud lifetime
- • Brighter clouds (more reflective)
🌍 Climate Implications:
The "aerosol indirect effect" is a major source of uncertainty in climate models. Increased anthropogenic aerosols → more CCN → brighter, longer-lived clouds → cooling effect. This partially offsets greenhouse gas warming but the magnitude is poorly constrained.
3. Köhler Theory
Köhler theory describes the equilibrium between a solution droplet and the surrounding water vapor. It combines two competing effects:
3.1 Curvature (Kelvin) Effect
Small droplets have curved surfaces, which increases the vapor pressure above a pure water droplet compared to a flat surface:
Physical interpretation: The curvature effect makes small droplets "want to evaporate" because molecules at a curved surface are less tightly bound. This creates a barrier to nucleation.
📐 Mathematical Deep Dive: Kelvin Equation Derivation
3.2 Solute (Raoult) Effect
When the droplet contains dissolved salt/solute, it lowers the vapor pressure (Raoult's law). This makes the droplet stable at subsaturated conditions:
For a spherical droplet of radius \(r\) containing solute mass \(m_s\):
3.3 Complete Köhler Equation
Combining both effects, the saturation ratio \(S = e/e_\infty - 1\) over a solution droplet is:
📐 Mathematical Deep Dive: Köhler Curve Analysis
3.4 Critical Radius and Activation
The critical point (\(r_c, S_c\)) represents a stability threshold:
Stable equilibrium (\(r < r_c\))
If \(r\) increases slightly, \(S(r)\) decreases → droplet is too large for ambient \(S\) → evaporates back to equilibrium. These are haze droplets in subsaturated air.
Unstable equilibrium (\(r = r_c\))
Critical radius. If ambient \(S > S_c\), the droplet "activates" and grows without bound (becomes a cloud droplet).
Activated droplet (\(r > r_c\))
For large \(r\), curvature effect becomes negligible, \(S(r) \to 0\). Droplet grows as long as ambient air is supersaturated. Growth limited by vapor diffusion.
🔬 Key Insight:
Köhler theory explains why clouds form at small supersaturations (\(S \sim 0.1\text{-}1\)%). The solute effect from hygroscopic CCN reduces the barrier to droplet formation. Larger and more hygroscopic CCN have smaller \(S_c\) and activate first as air becomes supersaturated in rising clouds.
4. Droplet Growth Mechanisms
Once activated, cloud droplets grow by two distinct mechanisms: condensation(vapor diffusion) and collision-coalescence (collision between droplets).
4.1 Condensational Growth
Diffusion of water vapor molecules to the droplet surface drives condensational growth. The growth rate is determined by mass conservation and vapor diffusion:
Converting to radius growth rate and accounting for latent heat release:
📐 Mathematical Deep Dive: Diffusion Growth Equation
4.2 Size-Dependent Growth Rates
The growth equation \(dr/dt \propto S/r\) has important implications:
- • Small droplets (\(r < 1\) μm): Grow very rapidly, \(dr/dt \sim 1/r\) is large
- • Large droplets (\(r > 10\) μm): Grow slowly, \(dr/dt \sim 1/r\) is small
- • Narrow size distribution: Condensation produces nearly monodisperse droplets
📊 Practical Example:
In a cloud with \(S = 0.5\)% supersaturation at \(T = 10°C\):
Conclusion: Condensation is efficient for small droplets but cannot produce precipitation-sized particles in the short lifetime of clouds. This is the condensation-coalescence bottleneck.
4.3 Collision-Coalescence
Larger droplets fall faster than smaller ones due to gravity. When a large droplet overtakes a smaller one, they may collide and coalesce, forming an even larger droplet. This process accelerates precipitation formation.
Terminal Velocity
A falling droplet reaches terminal velocity when gravitational force balances drag force. For small droplets (\(r < 40\) μm), Stokes drag applies:
Note: For \(r > 40\) μm, turbulent drag applies and \(v_t\) grows more slowly (\(v_t \propto r^{1/2}\))
Collection Efficiency
Not all collisions result in coalescence. The collection efficiency \(E\)accounts for:
Gravitational Collection Equation
The rate of mass growth for a collector drop of radius \(R\) falling through a cloud of smaller droplets:
Since larger drops fall faster (\(v_t \propto r^2\) for Stokes regime), the growth rate accelerates:\(dR/dt \propto R^2\). This leads to runaway growth - a few lucky droplets that get slightly larger quickly dominate and become raindrops.
⏱️ Growth Timescales:
In a maritime cloud with large droplets (\(r \sim 15\) μm) and high LWC (1 g/m³):
This explains why warm-rain showers in the tropics can form quickly without ice processes!
5. Ice Processes in Clouds
Most precipitation in mid-latitudes forms via the ice phase, even when it reaches the ground as rain. Ice processes are crucial for precipitation formation.
5.1 Ice Nucleation
Unlike water droplets, ice crystals require even more favorable conditions to form:
Homogeneous Nucleation
Pure water freezes without a nucleation site only at very cold temperatures:
- • Small droplets (\(r < 10\) μm): Freeze at \(T < -38°C\)
- • Larger droplets: May freeze at slightly warmer temperatures
- • Between 0°C and -38°C: Water remains supercooled liquid
Heterogeneous Nucleation
Ice nuclei (IN) catalyze freezing at warmer temperatures. Much rarer than CCN!
- • Deposition nucleation: Water vapor deposits directly as ice on IN
- • Condensation-freezing: Droplet forms on IN, then freezes
- • Contact freezing: IN contacts supercooled droplet, triggering freezing
- • Immersion freezing: IN inside droplet triggers freezing upon cooling
5.2 Ice Nuclei (IN)
Effective ice nuclei have crystal structures similar to ice. Common IN include:
- • Mineral dust: Clay minerals (kaolinite, montmorillonite) - most abundant IN
- • Biological particles: Bacteria (e.g., Pseudomonas syringae), pollen, fungal spores
- • Combustion particles: Soot, ash from biomass burning
- • Marine organics: Organic matter from sea spray
🌡️ Mixed-Phase Clouds:
Between 0°C and -38°C, clouds contain both supercooled liquid droplets and ice crystals. This temperature range is where the Bergeron-Findeisen process (below) operates. The exact phase depends on availability of IN and cloud dynamics.
5.3 Bergeron-Findeisen Process
The Bergeron-Findeisen (or Wegener-Bergeron-Findeisen) processis the dominant precipitation mechanism in mid-latitude clouds. It exploits a fundamental thermodynamic difference between ice and liquid water.
Saturation Vapor Pressure: Ice vs Water
At the same temperature below 0°C, the saturation vapor pressure over ice is lower than over water:
Mechanism
In a mixed-phase cloud at temperature \(T\) (e.g., -12°C):
- Air is saturated with respect to water: \(RH_{\text{water}} = 100\)%Vapor pressure \(e = e_{s,\text{water}}\)
- Same air is supersaturated with respect to ice: \(RH_{\text{ice}} > 100\)%Because \(e = e_{s,\text{water}} > e_{s,\text{ice}}\)
- Ice crystals grow rapidly by vapor depositionThey experience significant supersaturation
- Supercooled droplets evaporateVapor pressure drops below \(e_{s,\text{water}}\) as ice crystals consume vapor
- Net result: Vapor transfer from droplets to ice crystalsDroplets shrink, ice crystals grow large enough to fall as snow
📐 Mathematical Deep Dive: Bergeron-Findeisen Growth Rate
5.4 Ice Crystal Habits
Ice crystals grow in different habits (shapes) depending on temperature and supersaturation:
❄️ Dendrite Zone:
The -12°C to -16°C range is optimal for snowflake formation because: (1) largest \(e_{s,w} - e_{s,i}\) difference (fast Bergeron process), and (2) dendrite habit has high surface area for vapor deposition. Heavy snowfall often occurs when cloud tops are in this temperature range.
5.5 Riming and Aggregation
Ice particles grow further by mechanical processes:
Riming
Supercooled water droplets collide with ice crystals and freeze instantly upon contact, coating the crystal. Light riming produces snow pellets; heavy riming produces graupel(soft hail, 2-5 mm diameter). Extreme riming in strong updrafts produces hail.
Aggregation
Ice crystals collide and stick together, forming snowflakes. Most efficient near 0°C when crystals have sticky, partially melted surfaces. Large snowflakes (several cm) form when many crystals aggregate. Common with dendrites due to their complex shapes that interlock.
💻 Computational Example:
Click to view and run which simulates:
- • Vapor deposition growth of ice crystals in mixed-phase clouds
- • Temperature-dependent habit selection
- • Bergeron-Findeisen process efficiency at different temperatures
- • Competition between ice and liquid phases
Program generates saturation vapor pressure plots, supersaturation ratios, ice growth simulations, and ice crystal habit diagrams (Nakaya).
6. Precipitation Formation
6.1 Warm Rain Process
The warm rain process produces precipitation entirely by collision-coalescence, without ice. Occurs in:
- • Tropical clouds: Cloud tops remain above 0°C (shallow convection)
- • Maritime clouds: Large droplets, efficient collision-coalescence
- • Summer showers: Warm cloud bases, vigorous updrafts
Requirements for efficient warm rain:
1. Large Droplets
Initial droplet size \(r > 15\) μm (maritime conditions). Speeds up collision-coalescence by providing larger collectors.
2. High Liquid Water Content
LWC \(> 1\) g/m³. More cloud water available for collection means faster growth.
3. Cloud Depth
Deep clouds (\(> 2\) km thick) provide long collection paths for growing drops.
4. Broad Droplet Spectrum
Size diversity creates differential fall speeds needed for collisions.
6.2 Cold Rain Process
The cold rain process (ice-phase precipitation) dominates in mid-latitudes and produces most precipitation globally:
- Mixed-phase cloud formationCloud extends above 0°C isotherm. Supercooled droplets and ice coexist.
- Ice nucleationIN activate at temperatures below -5°C to -10°C.
- Bergeron-Findeisen processIce crystals grow rapidly at expense of supercooled droplets.
- Riming and aggregationIce particles grow to precipitation size (1-10 mm).
- Fallout and meltingSnow falls through 0°C level (melting level). If surface \(T > 0°C\), arrives as rain.
🌧️ Why Cold Rain Dominates:
Even summer rain in mid-latitudes often starts as snow aloft! Deep convective clouds extend well above the 0°C level (~4-5 km in summer). Ice processes are more efficient than collision-coalescence for producing precipitation-sized particles in the available time (cloud lifetime ~30-60 min).
6.3 Precipitation Types
The type of precipitation reaching the surface depends on the vertical temperature profile:
Rain
Liquid droplets \(> 0.5\) mm diameter. Forms from melted snow or warm rain process. Terminal velocity 4-9 m/s depending on size. Maximum raindrop size ~6 mm (larger drops break apart).
Drizzle
Small liquid droplets 0.2-0.5 mm. Falls slowly (\(< 3\) m/s). Common from stratus clouds, minimal evaporation needed. Light intensity.
Snow
Ice crystals and aggregates. Requires \(T < 0°C\) from cloud to surface. Density ~0.1 g/cm³ (10:1 snow ratio). Falls at 0.5-1.5 m/s. Variety of forms: dendrites, plates, needles, columns.
Graupel (Snow Pellets)
Heavily rimed ice particles, 2-5 mm. Opaque white, conical or spherical. Falls at 1-3 m/s. Common in convective clouds and winter storms.
Hail
Ice stones \(> 5\) mm, can exceed 10 cm. Forms in severe thunderstorms with strong updrafts (\(> 20\) m/s) that recirculate particles through supercooled regions. Alternating clear/opaque layers from wet vs dry growth.
Freezing Rain
Supercooled raindrops that freeze on contact with surface (\(T < 0°C\)). Forms when snow falls through warm layer aloft (melts to rain), then through shallow surface cold layer (insufficient time to refreeze). Creates dangerous ice accumulation.
Ice Pellets (Sleet)
Frozen raindrops, 2-5 mm transparent ice. Same vertical profile as freezing rain but deeper cold layer allows complete refreezing before reaching surface. Bounces on impact.
Melting Level and Rain/Snow Transition:
The 0°C isotherm altitude determines precipitation type. However, the transition is not sharp:
- • Falling snow cools air by sublimation/melting → can lower 0°C level by ~300 m
- • Wet-bulb temperature often better predictor than dry-bulb temperature
- • Rain typically occurs when surface \(T > 2°C\), snow when \(T < 0°C\), mixed 0-2°C
6.4 Drop Size Distribution
Precipitation particle sizes follow statistical distributions. The Marshall-Palmer distribution describes raindrop sizes:
Interpretation: Exponential decrease in number with size. Light rain (\(R = 1\) mm/h) has steep slope (mostly small drops). Heavy rain (\(R = 25\) mm/h) has shallower slope (more large drops).
6.5 Radar Reflectivity
Weather radars measure precipitation by detecting microwave energy scattered by hydrometeors. Radar reflectivity factor (Z) is defined as:
In practice, reflectivity is expressed in dBZ (decibels of Z):
The Z-R relationship converts radar reflectivity to rainfall rate. Common empirical relations:
💻 Computational Example:
Click to view and run which simulates:
- • Simulate Marshall-Palmer drop size distributions
- • Calculate radar reflectivity and rainfall rates
- • Model terminal velocities and collection efficiencies
- • Implement bulk microphysics schemes used in NWP models
Program generates Z-R relationships, terminal velocity curves, drop size distribution plots, and Kessler bulk microphysics simulations.
7. Cloud Electrification & Lightning (Advanced Topic)
Thunderstorms generate enormous electric fields through charge separation processes. When the field exceeds the dielectric breakdown of air (~3 MV/m), lightning occurs.
7.1 Charge Separation Mechanisms
The dominant mechanism for thunderstorm electrification is the non-inductive charging mechanism (ice-ice collisions):
- Riming occurs in mixed-phase regionGraupel/hail particles grow by collecting supercooled droplets (-10°C to -20°C)
- Collisions between ice crystals and graupelDuring collision, charge transfer occurs (still not fully understood)
- Temperature-dependent polarity• Warmer than -15°C: Graupel becomes negatively charged, ice crystals positive
• Colder than -15°C: Polarity reverses - Gravitational separationHeavy graupel/hail falls → negative charge at cloud base
Light ice crystals carried upward by updraft → positive charge at cloud top
This creates the classic tripole structure in thunderstorms:
7.2 Lightning Formation
When the electric field exceeds ~3 MV/m, air breaks down and conducts:
Intracloud (IC) Lightning
Most common type (~75% of all lightning). Discharge between positive and negative charge regions within the cloud. Often seen as diffuse "sheet lightning" when cloud blocks direct view.
Cloud-to-Ground (CG) Lightning
~25% of lightning. Most dangerous and well-studied. Multi-step process:
- Stepped leader: Negative charge descends in 50 m steps toward ground (~1 ms between steps)
- Attachment: When leader nears ground (~50-100 m), upward streamers from tall objects connect
- Return stroke: Bright discharge propagates upward at ~1/3 speed of light, 20,000-30,000 A current
- Continuing current: Lower-intensity current flow (100-1000 A) for 10-100 ms
- Dart leader: Subsequent strokes follow same channel (2-5 strokes typical, up to 20+)
Positive CG Lightning
~10% of CG strikes. Originates from upper positive charge region. Typically single stroke but much more powerful (100,000-400,000 A peak current). Can strike 10+ km from parent storm ("bolt from the blue"). More likely to start wildfires.
7.3 Thunder
Lightning heats the air channel to ~30,000 K (5× surface of the Sun) in microseconds. This explosive heating creates a shock wave that we hear as thunder.
Thunder characteristics:
- • Initial sharp crack: From nearest part of lightning channel
- • Rumbling: Sound from distant parts arrives later due to finite sound speed (~343 m/s)
- • Duration ~5-20 seconds: Indicates channel length of 2-7 km
- • Distance estimation: Count seconds between flash and thunder, divide by 3 for distance in km (or divide by 5 for miles)
⚡ Lightning Facts:
- • Global lightning rate: ~100 flashes per second (~8.6 million per day)
- • Peak return stroke current: 20,000-200,000 A (positive CG can exceed 400,000 A)
- • Channel temperature: ~30,000 K
- • Energy per flash: ~250 kWh (mostly dissipated as heat, light, sound)
- • Flash duration: 0.2-2 seconds (multiple strokes)
- • Channel diameter: 2-3 cm (return stroke), expands to ~10-20 cm
Summary
Cloud physics and precipitation processes are central to atmospheric science. Key concepts covered:
- ✓ Clouds form via four lifting mechanisms: orographic, frontal, convective, convergence
- ✓ Cloud condensation nuclei (CCN) enable droplet formation at small supersaturations
- ✓ Köhler theory explains CCN activation through curvature and solute effects
- ✓ Droplets grow by condensation (fast for small \(r\)) and collision-coalescence (needed for rain)
- ✓ Ice processes dominate mid-latitude precipitation via Bergeron-Findeisen mechanism
- ✓ Precipitation type depends on vertical temperature profile and microphysical processes
- ✓ Lightning results from charge separation in mixed-phase clouds
Understanding these microphysical processes is essential for weather prediction, climate modeling, and quantifying aerosol-cloud-precipitation interactions. These principles bridge the gap between thermodynamics (Part I), dynamics (Part II), and larger-scale climate systems (Part IV).