Part 3, Chapter 2

MHD Equations

Ideal and resistive magnetohydrodynamics

2.1 The MHD Approximation

MHD treats plasma as a single conducting fluid. Key assumptions:

  • Quasi-neutrality: ne β‰ˆ Zni (charge separation negligible)
  • Low frequency: Ο‰ β‰ͺ Ξ©ci (slower than ion cyclotron)
  • Large scales: L ≫ ρi, Ξ»D (larger than ion gyroradius)
  • Non-relativistic: u β‰ͺ c

2.2 Ideal MHD Equations

Mass Conservation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Momentum Equation

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}\right) = \mathbf{J} \times \mathbf{B} - \nabla p$$

Adiabatic Energy

$$\frac{d}{dt}\left(\frac{p}{\rho^\gamma}\right) = 0 \quad \Rightarrow \quad p \propto \rho^\gamma$$

Faraday's Law

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

Ampère's Law (MHD limit)

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$

Ideal Ohm's Law

$$\mathbf{E} + \mathbf{u} \times \mathbf{B} = 0$$

2.3 Magnetic Induction Equation

Combining Faraday's law with ideal Ohm's law gives the induction equation:

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B})$$

Ideal MHD Induction Equation

Frozen-in Flux Theorem: In ideal MHD, magnetic field lines move with the fluid. Magnetic flux through any surface moving with the plasma is conserved.

2.4 Resistive MHD

Including resistivity Ξ· in Ohm's law:

$$\mathbf{E} + \mathbf{u} \times \mathbf{B} = \eta \mathbf{J}$$

Resistive Ohm's Law

The induction equation becomes:

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \frac{\eta}{\mu_0}\nabla^2 \mathbf{B}$$

Magnetic Reynolds Number

$$R_m = \frac{\mu_0 u L}{\eta} = \frac{\text{advection}}{\text{diffusion}}$$

Rm ≫ 1: ideal MHD valid | Rm ~ 1: resistive effects important

2.5 MHD Force Balance

The Lorentz force can be written as:

$$\mathbf{J} \times \mathbf{B} = \frac{(\nabla \times \mathbf{B}) \times \mathbf{B}}{\mu_0} = -\nabla\left(\frac{B^2}{2\mu_0}\right) + \frac{(\mathbf{B} \cdot \nabla)\mathbf{B}}{\mu_0}$$

Magnetic Pressure

$$p_B = \frac{B^2}{2\mu_0}$$

Isotropic pressure from B-field

Magnetic Tension

$$\frac{(\mathbf{B} \cdot \nabla)\mathbf{B}}{\mu_0}$$

Tension along curved field lines

Key Takeaways

  • βœ“ Ideal MHD: E + uΓ—B = 0 β†’ frozen-in flux
  • βœ“ Resistive MHD adds Ξ·βˆ‡Β²B diffusion term
  • βœ“ Magnetic Reynolds number Rm determines regime
  • βœ“ Lorentz force = magnetic pressure + tension