3.3 Nutrients & Cycles

Marine nutrients (N, P, Si, Fe) limit primary productivity. Their cycling through biological, chemical, and physical processes drives ocean ecosystems and connects them to the atmosphere and lithosphere.

Major Nutrients

Nitrogen (N)

NO₃⁻, NO₂⁻, NH₄⁺. Often limiting in open ocean. Redfield ratio: N:P = 16:1

Phosphorus (P)

PO₄³⁻. Essential for ATP, DNA. Limiting in some regions.

Silica (Si)

SiOβ‚‚. Essential for diatoms (glass frustules). Upwelling regions rich in Si.

Iron (Fe)

Micronutrient, limits productivity in HNLC regions (High Nutrient, Low Chlorophyll)

The Redfield Ratio

\( \text{C}:\text{N}:\text{P} = 106:16:1 \)

Universal ratio in marine organic matter (phytoplankton, detritus)

This remarkable constancy reflects the biochemical requirements of marine life and allows prediction of nutrient cycling from any one measurement.

Nutrient Profiles

Surface

Depleted by phytoplankton uptake

Nutricline

Rapid increase (100-500m)

Deep

High concentration (remineralization)

Python: Nutrient Profiles

#!/usr/bin/env python3
"""nutrient_cycles.py - Typical nutrient profile"""
import numpy as np
import matplotlib.pyplot as plt

def nutrient_profile(z, N_deep=30, z_nutricline=200, dz=100):
    """
    Model nutrient concentration vs depth
    z: depth (m), N_deep: deep concentration (Β΅M)
    """
    return N_deep * (1 - np.exp(-(z - z_nutricline) / dz)) * (z > z_nutricline) + \
           N_deep * 0.1 * (z <= z_nutricline)

# Plot
z = np.linspace(0, 2000, 100)
NO3 = nutrient_profile(z, N_deep=35)
PO4 = nutrient_profile(z, N_deep=2.2)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 6))
ax1.plot(NO3, z, 'g-', lw=2)
ax1.set_xlabel('NO₃ (Β΅M)'); ax1.set_ylabel('Depth (m)')
ax1.invert_yaxis(); ax1.set_title('Nitrate Profile')

ax2.plot(PO4, z, 'b-', lw=2)
ax2.set_xlabel('POβ‚„ (Β΅M)')
ax2.invert_yaxis(); ax2.set_title('Phosphate Profile')
plt.tight_layout()