Part V: Experimental Methods

Introduction

Experimental particle physics uses particle accelerators and sophisticated detectors to probe the fundamental structure of matter. Modern experiments at facilities like the LHC, Fermilab, and KEK test theoretical predictions and search for new physics.

Particle Accelerators

Large Hadron Collider (LHC)

The LHC at CERN is the world's largest and most powerful particle accelerator:

  • Circumference: 27 km
  • Collision energy: $\sqrt{s} = 13.6$ TeV (Run 3, 2022-)
  • Luminosity: $\mathcal{L} \approx 2 \times 10^{34}$ cm$^{-2}$s$^{-1}$
  • Proton-proton collisions every 25 ns
  • ~40 million collisions per second

Other Major Facilities

Fermilab (USA):

Tevatron ($p\bar{p}$, retired 2011)

NOvA, DUNE (neutrino experiments)

KEK (Japan):

Belle II ($e^+e^-$ at $\Upsilon(4S)$)

T2K (neutrino oscillations)

SLAC (USA):

BaBar (retired)

LCLS (X-ray laser)

DESY (Germany):

HERA ($ep$, retired 2007)

European XFEL

Detector Components

Tracking Systems

Track charged particle trajectories using silicon pixels and strips:

  • Silicon pixel detectors: spatial resolution $\sim 10 \mu$m
  • Drift chambers, straw tubes for outer layers
  • Measure momentum: $p_T = 0.3 B R$ (GeV, Tesla, meters)
  • Vertex resolution: $\sim 15 \mu$m (crucial for $b$-tagging)

Calorimeters

Measure particle energies by total absorption:

Electromagnetic (ECAL):

Pb-WO$_4$ crystals (CMS)

Liquid argon (ATLAS)

Measure $e^\pm, \gamma$ energies

Resolution: $\sigma_E/E \sim 2-3\%$

Hadronic (HCAL):

Brass/scintillator or steel/scintillator

Measure jet energies

Resolution: $\sigma_E/E \sim 50-100\%/\sqrt{E}$

Muon Systems

Outermost detector layer, identifies muons that penetrate calorimeters:

  • Drift tubes, resistive plate chambers (RPCs)
  • Muons are minimum ionizing particles (MIPs)
  • Combined with tracker for precise momentum measurement
  • $p_T$ resolution: $\sim 1-2\%$ at 100 GeV

Trigger and Data Acquisition

Trigger System

Reduces 40 MHz collision rate to ~1 kHz for permanent storage:

Level-1 Trigger (Hardware):

  • Custom electronics
  • Reduces rate to $\sim 100$ kHz
  • Decision in $< 4 \mu$s
  • Uses calorimeter and muon info

High-Level Trigger (Software):

  • Farm of computers running reconstruction
  • Reduces rate to $\sim 1$ kHz
  • Full detector information available
  • Event size: $\sim 1$ MB → ~1 PB/year

Particle Identification

Signatures

Electrons:

Track + ECAL deposit

$E/p \approx 1$

Photons:

ECAL deposit, no track

Electromagnetic shower

Muons:

Track + muon system hit

Minimal calorimeter energy

Jets (quarks/gluons):

Track + ECAL + HCAL

Hadronic shower

Neutrinos:

Missing transverse energy

$E_T^{\text{miss}} = -\sum \vec{p}_T$

$b$-jets:

Displaced vertex ($c\tau \sim 450 \mu$m)

Soft lepton tag

Key Takeaways

  • LHC: 27 km circumference, $\sqrt{s} = 13.6$ TeV, ~40M collisions/s
  • Detectors: tracking (silicon), calorimeters (EM/hadronic), muon systems
  • Trigger reduces 40 MHz → 1 kHz for storage (~1 PB/year)
  • Particle ID: electrons, photons, muons, jets, neutrinos ($E_T^{\text{miss}}$)
  • $b$-tagging: displaced vertices, lifetime $c\tau \sim 450 \mu$m