Part VII: Neutrino Physics

Introduction

Neutrinos are the most abundant massive particles in the universe, yet the least understood. Originally thought to be massless in the Standard Model, the discovery of neutrino oscillations proved they have tiny non-zero masses.

Nobel Prize 2015: Kajita and McDonald for discovering neutrino oscillations

Neutrino Oscillations

PMNS Matrix

Flavor eigenstates $(\nu_e, \nu_\mu, \nu_\tau)$ are superpositions of mass eigenstates $(\nu_1, \nu_2, \nu_3)$:

$$ \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U_{\text{PMNS}} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} $$

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

Contains 3 mixing angles $(\theta_{12}, \theta_{23}, \theta_{13})$ and CP-violating phase $\delta_{CP}$

Oscillation Probability

For two-flavor approximation:

$$ P(\nu_\alpha \to \nu_\beta) = \sin^2(2\theta)\sin^2\left(\frac{\Delta m^2 L}{4E}\right) $$

where $\Delta m^2 = m_2^2 - m_1^2$, $L$ = baseline, $E$ = neutrino energy

Experimental Results

Mass Splittings

Solar Neutrinos (KamLAND, SNO):

$\Delta m^2_{21} = (7.53 \pm 0.18) \times 10^{-5}$ eV$^2$

$\sin^2\theta_{12} = 0.307 \pm 0.013$

Atmospheric Neutrinos (Super-K, MINOS, NOvA):

$|\Delta m^2_{32}| = (2.51 \pm 0.05) \times 10^{-3}$ eV$^2$

$\sin^2\theta_{23} = 0.546 \pm 0.021$ (near maximal mixing)

$\sin^2\theta_{13} = 0.0220 \pm 0.0007$ (reactor experiments)

Key Experiments

Super-Kamiokande:

50 kton water Cherenkov detector

Atmospheric neutrino oscillations (1998)

SNO (Sudbury):

Heavy water detector

Solar neutrino problem resolution

Daya Bay / RENO:

Reactor neutrinos

Measured $\theta_{13}$ (2012)

T2K / NOvA:

Long-baseline accelerator

Measuring $\delta_{CP}$

Open Questions

Unsolved Mysteries

1. Mass Hierarchy:

Normal ($m_1 < m_2 < m_3$) or Inverted ($m_3 < m_1 < m_2$)?

JUNO, DUNE, Hyper-K will resolve this

2. Absolute Mass Scale:

Oscillations only measure $\Delta m^2$, not absolute masses

Cosmology: $\sum m_\nu < 0.12$ eV (Planck)

KATRIN: $m_{\nu_e} < 0.8$ eV (direct measurement)

3. Dirac or Majorana?

Are neutrinos their own antiparticles (Majorana)?

Neutrinoless double-beta decay: $(A,Z) \to (A,Z+2) + 2e^-$

Current limit: $T_{1/2} > 10^{26}$ years (no signal yet)

4. CP Violation in Leptons:

Is $\delta_{CP} \neq 0$?

Current hint: $\delta_{CP} \approx -90°$ (T2K, NOvA)

Could explain matter-antimatter asymmetry (leptogenesis)

Key Takeaways

  • Neutrino oscillations prove non-zero neutrino masses (beyond SM)
  • Three mass splittings: $\Delta m^2_{21} \sim 10^{-5}$ eV$^2$, $\Delta m^2_{32} \sim 10^{-3}$ eV$^2$
  • PMNS mixing: $\theta_{12} \approx 34°$, $\theta_{23} \approx 47°$, $\theta_{13} \approx 8.5°$
  • Open questions: mass hierarchy, absolute scale, Dirac vs Majorana, CP violation
  • Future experiments: DUNE, Hyper-K, JUNO (hierarchy), KATRIN (mass), KamLAND-Zen (0νββ)