Complete Standard Model Lagrangian
Assembling all pieces: The most successful equation in physics
The Standard Model in One Equation
Everything we know about particle physics—from quarks to the Higgs, from QED to the strong force—can be encoded in a single (admittedly complex) Lagrangian density:
ℒSM = ℒgauge + ℒfermion + ℒHiggs + ℒYukawaWith 19 free parameters, this equation explains every confirmed particle physics experiment to date—a triumph of mathematical physics!
1. Gauge Kinetic Terms
The gauge boson dynamics:
ℒgauge = -¼ GaμνGaμν - ¼ WiμνWiμν - ¼ BμνBμνQCD (SU(3)C):
Gaμν = ∂μGaν - ∂νGaμ - gsfabcGbμGcν- • a = 1,...,8 (8 gluons)
- • fabc = SU(3) structure constants
- • gs = strong coupling ≈ 1.2 at MZ
- • Contains 3-gluon and 4-gluon vertices
Weak SU(2)L:
Wiμν = ∂μWiν - ∂νWiμ - g εijkWjμWkν- • i = 1,2,3 (3 W bosons)
- • εijk = Levi-Civita symbol
- • g ≈ 0.65 at MZ
- • WWW and WWWW self-interactions
Hypercharge U(1)Y:
Bμν = ∂μBν - ∂νBμ- • Abelian: no self-interaction
- • g' ≈ 0.36 at MZ
- • Mixes with W³ to form γ and Z
2. Fermion Kinetic & Interaction Terms
ℒfermion = Σψ iψ̄ γμ Dμ ψSum over all fermion fields with covariant derivative:
Dμ = ∂μ + igsGaμTa + ig Wiμτi/2 + ig' Y Bμ/2Field Content (per generation):
Gauge interactions encoded:
- • QCD: Quarks couple to gluons via Ta (color charge)
- • Weak: Left-handed doublets couple to Wi via τi/2 (weak isospin)
- • Hypercharge: All fermions couple to B via Y (hypercharge)
3. Higgs Sector
ℒHiggs = (DμΦ)†(DμΦ) - V(Φ)Higgs Doublet:
Φ = (φ+, φ0)T ~ (1, 2, +1/2)4 real scalar fields: φ₁, φ₂, φ₃, φ₄
Higgs Potential:
V(Φ) = μ²Φ†Φ + λ(Φ†Φ)²- • μ² < 0: triggers spontaneous symmetry breaking
- • λ > 0: ensures vacuum stability
- • VEV: v = √(-μ²/λ) ≈ 246 GeV
- • Higgs mass: mH² = 2λv²
Unitary Gauge:
Φ = (0, (v + H)/√2)T3 Goldstone bosons eaten → longitudinal W±, Z modes
4. Yukawa Couplings
Fermion masses arise from Yukawa interactions with the Higgs:
ℒYukawa = -Yiju Q̄Li Φ̃ uRj - Yijd Q̄Li Φ dRj - Yije L̄Li Φ eRj + h.c.where Φ̃ = iτ²Φ* for up-type quarks (to get correct hypercharge)
- • Yu,d,e are 3×3 complex matrices
- • i,j = generation indices (1,2,3)
- • When Φ → v/√2: Yij v/√2 = mass matrix
After diagonalization:
CKM Mixing:
Mismatch between up/down diagonalization → VCKM = VLu†VLd
W+ couples: ūi γμ Vij dj5. The Complete SM Lagrangian
Putting It All Together:
ℒSM =
- ¼ GaμνGaμν - ¼ WiμνWiμν - ¼ BμνBμν
+ Σψ iψ̄ γμ Dμ ψ
+ (DμΦ)†(DμΦ) - V(Φ)
- Yiju Q̄Li Φ̃ uRj - Yijd Q̄Li Φ dRj - Yije L̄Li Φ eRj + h.c.This single equation (plus gauge fixing and ghost terms in perturbation theory) describes all known particle physics below the Planck scale (excluding gravity).
6. The 19 Parameters
Gauge Couplings (3):
Quark Yukawas (6):
Lepton Yukawas (3):
CKM Parameters (4):
Higgs Parameters (2):
QCD θ-angle (1):
Open questions about parameters:
- • Why these particular values? (hierarchy problem)
- • Why 3 generations?
- • Why do Yukawas span 6 orders of magnitude?
- • Why is θQCD so small? (strong CP problem)
- • Are they related at GUT scale?
7. Feynman Rules Summary
From ℒSM, we derive all interaction vertices:
Summary
- ✓ Complete Lagrangian: ℒgauge + ℒfermion + ℒHiggs + ℒYukawa
- ✓ Gauge group: SU(3)C × SU(2)L × U(1)Y with 12 gauge bosons
- ✓ Fermion content: 3 generations × (2 quarks + 2 leptons) × 2 chiralities
- ✓ Higgs mechanism: Spontaneous breaking SU(2)L×U(1)Y → U(1)EM
- ✓ 19 parameters: 3 couplings + 9 Yukawas + 4 CKM + 2 Higgs + 1 θ
- ✓ Renormalizable: All divergences canceled to all orders in perturbation theory
- ✓ Experimental success: Every prediction confirmed (so far!)
Further Resources
- • Peskin & Schroeder - Chapter 20-21 (Complete Electroweak Theory)
- • Schwartz - Chapter 29 (The Standard Model Lagrangian)
- • Srednicki - Part VI (The Standard Model)
- • Weinberg - Vol II, Chapters 19-21 (Gauge Theories of the Second Kind)